Đạo hàm Vi_phân

Bài chi tiết: Đạo hàm
Đường tiếp tuyến tại (x,f(x)) Đạo hàm tại các điểm khác nhau của hàm phân biệt

Giả sử x và y là các số thực và y là hàm của x, nghĩa là với mỗi giá trị của x, có một giá trị tương ứng của y. Mối quan hệ này có thể được viết là y = f(x). Nếu f(x) là phương trình của đường thẳng (gọi là phương trình tuyến tính), thì có hai số thực m và b sao cho y = mx + b. Trong "hình thức chặn dốc" này, thuật ngữ m được gọi là độ dốc và có thể được xác định từ công thức:

m = thay đổi của  y thay đổi của  x = Δ y Δ x , {\displaystyle m={\frac {{\text{thay đổi của }}y}{{\text{thay đổi của }}x}}={\frac {\Delta y}{\Delta x}},}

trong đó ký hiệu Δ (dạng chữ hoa của chữ Hy Lạp delta) là tên viết tắt của "thay đổi". Theo sau đó Δy = m Δx.

Nói chung hàm số không phải là một đường thẳng, vì vậy nó không có độ dốc. Về mặt hình học, đạo hàm của f tại điểm x = a là độ dốc của đường tiếp tuyến với hàm f tại điểm a (xem hình). Điều này thường được ký hiệu là f ′(a) trong ký hiệu Lagrange hoặc dy/dx|x = a trong ký hiệu của Leibniz. Do đạo hàm là độ dốc của xấp xỉ tuyến tính với f tại điểm a, nên đạo hàm (cùng với giá trị của f tại a) xác định xấp xỉ tuyến tính tốt nhất hoặc tuyến tính hóa của f gần điểm a.

Nếu mọi điểm a trong miền của f có đạo hàm, có một hàm gửi mọi điểm a đến đạo hàm của f tại a. Ví dụ: nếu f(x) = x2, thì hàm đạo hàm f ′(x) = dy/dx = 2x.

Một khái niệm liên quan chặt chẽ là sự khác biệt của một hàm. Khi x và y là các biến thực, đạo hàm của f tại x là độ dốc của đường tiếp tuyến với đồ thị của f tại x. Vì nguồn và đích của f là một chiều, nên đạo hàm của f là một số thực. Nếu x và y là vectơ, thì phép tính gần đúng tuyến tính tốt nhất với đồ thị của f phụ thuộc vào cách f thay đổi theo nhiều hướng cùng một lúc. Lấy xấp xỉ tuyến tính tốt nhất theo một hướng xác định đạo hàm riêng, thường được ký hiệu là ∂y/∂x. Việc tuyến tính hóa của f theo tất cả các hướng cùng một lúc được gọi là đạo hàm tổng.